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Abstract

Well-acknowledged problems associated with modeling the history force in large, many-particle simulations are related
to the need to store and integrate over the entire lifetime of the particle. To address this concern, a computationally effi-
cient method for calculating the history force (the ‘‘window model’’) was developed based on the assumption of weak
changes in acceleration in the recent relevant history of the particle. This assumption leads to the design of a model with
a truncated integration interval which requires storage of and integration over a much shorter period of the particle’s
history compared to other history force models. The truncation of the integration window can yield more than an order
of magnitude savings in CPU time. In a related study, the two empirical coefficients of the Mei & Adrian history force
kernel have been optimized (based on comparison with experimental data for falling particles) to give improved predictions
of the data. Both the new history force kernel and the window model have been investigated for a large range of exper-
imental data yielding, to the authors’ knowledge, the most extensive comparison yet conducted. For falling particles,
the new history force kernel shows good predictions for particle Reynolds numbers ranging from 9 to 853 and density
ratios from 1.17 to 9.32. Good predictions were also obtained using the window model when changes in particle relative
acceleration over the window period were modest. For particles under forced oscillating in a quiescent fluid, the history
kernel was generally reasonable but did not predict the peak forces well in all cases. This may be explained by noting that
the assumption of a t�2 long-time dependence for the finite Reynolds number history force kernel may become invalid dur-
ing rapid deceleration and wake ingestion (which can lead to exponential or t�1 behavior). However, the finite Reynolds
number kernel gives better predictions in all cases than those made using the Basset history force. The window model was
only reasonable for the oscillating particle cases when the changes in the relative particle acceleration over the integration
window were small.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: History force; Window model; Basset force; Lagrangian particle tracking
0301-9322/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijmultiphaseflow.2007.02.005

* Corresponding author. Tel.: +1 217 244 5581; fax: +1 217 244 0720.
E-mail address: loth@uiuc.edu (E. Loth).

mailto:loth@uiuc.edu


834 A.J. Dorgan, E. Loth / International Journal of Multiphase Flow 33 (2007) 833–848
1. Introduction

1.1. Lagrangian particle momentum equation

To numerically model a multiphase flow, it is often important to use separate formulations for the different
phases. The present research is concerned with the hydrodynamic forces acting on an isolated, non-spinning,
spherical particle in a continuous-phase flow of spatially-uniform velocity. Particles treated in a Lagrangian
framework with a point-force method update their centroid-averaged properties (position, velocity, etc.) along
the path of an individual particle based on the state of the continuous-phase (Loth, 2000). The point-force
treatment uses theoretical and/or empirical models to describe this force (rather than resolving the details
of the flowfield over the particle surface), and thus allows simulation of a large number of particles. Herein,
we focus on efficient and accurate description of the history force for various Reynolds numbers for which the
jerk (time derivative of the acceleration) is weak.

In the limit of creeping flow conditions (Rep� 1, where Rep ¼ dpV rel=mf Þ, the particle equation of motion
for a solid (or fully contaminated) sphere can be written in terms of the relative velocity of the particle
Vrel ¼ Vp � Vf @p, where subscript ‘‘p’’ denotes a particle quantity, subscript ‘‘f’’ denotes a continuous-phase
quantity, and subscript ‘‘f@p’’ denotes continuous-phase conditions hypothetically extrapolated to the parti-
cle center. The equation of motion includes time derivatives of the form d/dt taken along the particle path and
derivatives of the form D/Dt taken along the continuous phase path. If Faxen forces and discontinuous veloc-
ity changes are neglected, the equation of motion (Maxey and Riley, 1983) can be written as
mp
dVp

dt
¼ � plf dpVrel þ mpg þ qf Xp

DVf @p

Dt
� g

� �
þ CMqf Xp

dVf @p

dt
� dVp

dt

� �

� 3plf dp

Z t

�1
KBasset t � sð Þ dVrel
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ds ð1Þ
In this expression, m is mass, g is the gravity vector, d is diameter, q is density, lf is molecular viscosity, and X
is volume (¼ p

6
d3

p for a sphere). The left-hand-side of Eq. (1) is the inertial force assuming constant particle
mass. On the right-hand-side, the ‘‘point-forces’’ include, from left to right, the quasi-steady drag force, the
particle body (gravitational) force, the stress gradient force (due to fluid acceleration and the hydrostatic pres-
sure gradient), the added (or virtual) inertial mass force where the added mass coefficient (CM) is 1/2, and the
history force which accounts for unsteady drag effects due to the temporal development of the particle bound-
ary layer and wake. For the creeping flow limit, the history force kernel is
KBassetðt � sÞ ¼ 4pðt � sÞmf

d2
p

" #�1=2

ð2Þ
where lf ¼ mf qf . Eqs. (1) and (2) combine to give the well-known the Basset–Boussinesq–Oseen equation
(Crowe et al., 1998).

Since inertial effects and drag often dominate particle dynamics, researchers typically define a particle
response time based on these forces as sp � ðqp þ qf CMÞd2

p=18lf . If the magnitude of sp compared to a
relevant fluid time scale (i.e. the Stokes number) is large we would expect drag to negligibly affect the particle
trajectory. Conversely, the particle motion can be dominated by drag effects when the Stokes number is small,
with history forces becoming important for periods of high relative acceleration. The importance of the history
force is also related to the particle density ratio, w ¼ qp=qf , where, generally speaking, low density ratio par-
ticles (w� 1) and those of order unity (w � 1) can be significantly affected by the history force while high den-
sity ratio particles (w� 1) will be negligibly affected (Armenio and Fiorotto, 2001).

In this study, the appropriate form of the particle equation of motion at finite Reynolds numbers is con-
sidered. While the body force, inertial force, and fluid stress force are insensitive to Reynolds number
(Druzhinin and Elghobashi, 1998), the quasi-steady and unsteady drag force as well as the added mass force
require modification from the creeping flow expressions. The added mass force, as given in Eq. (1), incurs a
subtle modification for inviscid conditions (Auton et al., 1988) such that the fluid acceleration term in the
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added-mass force must be defined along the fluid-path (DVf @p=DtÞ. This form was found to be reasonable for
a large range of Reynolds number by resolved-surface simulations (Mei et al., 1991; Kim et al., 1998) and
experiments (Mei and Klausner, 1992; Bataille et al., 1991). Furthermore, the inviscid form effectively reverts
to that in Eq. (1) at creeping flow conditions so that the Auton version may be generally employed (Maxey and
Riley, 1983).

The quasi-steady drag term can be modified to account for finite Reynolds number effects by multiplying
the creeping flow result by a ‘‘Stokesian correction factor’’, f. The empirical correlation given by White
(1991) gives a reasonable representation of the spherical-particle steady drag for a wide range of Reynolds
numbers
f ¼ 1þ Rep

4ð1þ
ffiffiffiffiffiffiffi
Rep

p
Þ
þ Rep

60
for Rep < 2� 105 ð3Þ
Based on the above, the finite Reynolds number equation of motion can expressed in terms of particle re-
sponse time (sp), and density ratio as
dVp

dt
¼ � 1
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wþ CM
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Z t
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where K is left as a general function to be discussed in the following section.

1.2. Particle history force at finite Reynolds numbers and long times

In general, the long-time behavior of the history force kernel for an unsteady flowfield with finite Rep values
is not fully understood. Mei and Adrian (1992) used results from resolved-surface simulations conducted by
Mei et al. (1991) and an asymptotic analysis to investigate the history force at finite convective conditions for
small amplitude (10%) fluctuations of the mean flow (no flow reversal). They determined that the limiting
behavior yields a short-time period decay rate proportional to t�1/2 (as given by the creeping flow expression,
KBasset) while the long-time decay rate is much faster and proportional to t�2. They further suggested an inter-
polation between the short and long-time limits to obtain a model reasonable for the history force kernel for
Rep values up to 100 (see Fig. 3 of Mei and Adrian, 1992, and associated discussion) as
K ðt � s; sÞ; c1; c2ð Þ ¼ 4pðt � sÞ
sd

� �1=2c1

þ pðt � sÞ2

fhs2
d
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;
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with

fH ¼ ð0:75þ c2RepÞ3
ð5Þ
In this form, the times are non-dimensionalized by the diffusive (viscous) time-scale sd ¼ d2
p=mf . The specific

constants used for the Mei & Adrian kernel (KMei) were obtained by matching their oscillating flow simula-
tions which yielded c1 ¼ 2 and c2 ¼ 0:105.

It was later shown that t�2 behavior was not universally valid. For example, Lovalenti and Brady (1993)
observed exponential decay rates of the kernel for long-times while Mei (1994) found that the long-time decay
rate for an impulsively started flow could be described as algebraic decay faster than t�2 or as a ‘‘slow expo-
nential’’ decay. Lawrence and Mei (1995) show that the appropriate long-time decay rate for a particle falling
from rest to terminal velocity is t�2, but found different behavior for a particle suddenly coming to rest or
undergoing flow reversal where the decay rate is t�1. Similar findings were reported by Lovalenti and Brady
(1995) who examined the history force analytically and noted that the transition from the short-time decay
rate of t�1/2 to a more rapid long-term decay depends on whether the particle was being accelerated or
decelerated.

Kim et al. (1998) developed a more detailed semi-empirical formulation (including six constants determined
by calibration with resolved-surface simulations) with the goal of increased robustness using a more detailed
combination of the t�1/2 and t�2 dependence. The Kim et al. model for weak accelerations is given by Eq. (5)
where their values of the constants are c1 ¼ 2:5 and c2 ¼ 0:126 based on their own resolved-surface
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simulations. As such, there is some disagreement on how best to model the transition from short-time behav-
ior to long-time behavior with the effects of Reynolds number in terms of the values of c1 and c2. However, the
form of Eq. (5) is deemed reasonable for simple flows so long as the particle does not ingest its own wake due
to an abrupt stop, rapid deceleration, or direction reversal.

1.3. Objectives of current study

The motivation for this work is two-fold: (1) we seek improvements in accuracy of history force modeling
using the form given in Eq. (5) based on detailed comparison with experiment and (2) we seek a computation-
ally efficient way to compute the history force for finite Reynolds number particles. The first objective arose
because there are different values of c1 and c2 available in the literature and because there has not been a com-
prehensive comparison with all available quantitative experiments in this matter. The second objective was
motivated by the significant (and sometimes prohibitive) computational cost of calculating the history force
integral for many particles (which includes the entire life time of the particle). The memory requirements
needed to store the full history of particle information and the CPU requirements needed to compute the
kernel at a large number integration points can become problematic for many multiphase flows. For example,
storing the three-dimensional relative velocity for 100,000 particles (consistent with previous simulations by
Dorgan and Loth, 2004) for 1000 time-steps using 4-byte real values would require 1.2 GB of memory.

To establish a more efficient method for computing the history force integral (that would reduce the
required CPU hours and memory requirement), a ‘‘window model’’ was developed. This was inspired by
the experiments of Mordant and Pinton (2000) who noted that the history force at finite Rep was well repre-
sented by the creeping flow expression for short time periods (consistent with resolved-surface simulations of
Chang and Maxey, 1994), but that the history force became negligible after a finite time interval. This is con-
sistent with similar experiments by Moorman (1955) and the nature of Eq. (5). This suggests that the finite Rep

history force can be represented by the creeping flow history force ‘‘clipped’’ at some finite time which may be
achieved by replacing the lower limit of integration with t � twindow, where twindow is obtained by assuming the
relevant acceleration is approximately constant and by equating the integral with that which would have been
obtained by Eq. (5).

2. Methodology

This section first discusses the optimization of the constants c1 and c2 (Eq. (5)) based on experimental data,
particularly the falling particle data given by Moorman (1955). Herein, a ‘‘falling particle’’ is one released
from rest and allowed to accelerate to terminal velocity under the influence of gravity. An efficient way for
computing the new kernel (for any values of these constants) will be discussed in the remainder of the section.
In all the simulations, a very fine temporal resolution of 0.001sp was used to insure time-step independence
since only single particles in simple flows were considered (though generally 0.1sp is sufficient for accurate sim-
ulation of drag-dominated particles).

2.1. Calibration of c1 and c2 for falling particles

A number of the falling particle data sets given by Moorman (1955) were examined and compared to the
predictions given by the Mei & Adrian and Kim et al. history force kernels. Three typical data sets (which have
a density ratio of 3.69 and terminal Reynolds numbers ranging from 28.2 to 166) are shown in Fig. 1 along
with predictions made using the various coefficient sets for the history force kernel of Eq. (5) as well as a pre-
diction made using no history force. The experimental data correspond to, in order of increasing Reynolds
number, Run #22, #21, #19 as given in Table 1. While the Mei & Adrian and approximate Kim et al. history
kernels give much better predictions than the Basset force kernel, they tend to slightly over-predict the veloc-
ities (under-predict the history force) associated with the Moorman data. This minor deficiency can be gener-
ally improved for the Moorman data by using c1 ¼ 2:5 and c2 ¼ 0:2 (labeled ‘‘present kernel’’ in Fig. 1). These
values were also found to be quite robust for the falling particle data of Mordant and Pinton (2000).



Fig. 1. Comparison of the various history force kernels with falling particle experiments of constant density ratio and various terminal
Reynolds numbers.
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2.2. Development of the window model

In general, evaluating the history force kernels discussed above requires integration over a temporal range
of s ¼ �1 to s ¼ t regardless of Reynolds number. The concept behind the window model is simple—we wish
to prescribe a finite integration window such that the history force only requires integration over a temporal
range of s ¼ t � twindow to s ¼ t which can be represented by the kernel Kwindow,



Table 1
Experimental data sets considered in the present study

Run # Rep,term w twindow/(sp/f)

Moorman

9 55 9.32 0.11
10 31 9.15 0.10
11 15 9.15 0.09
12 9 9.15 0.10
17 600 3.51 1.16
18 301 3.51 0.71
19 166 3.69 0.46
21 63 3.69 0.28
22 28 3.69 0.22
26 45 2.47 0.35
27 29 2.47 0.31
28 15 2.47 0.30
32 853 1.65 2.85
33 319 1.22 1.71
34 231 1.41 1.24
35 136 1.72 0.77
36 48 1.27 0.60
37 15 1.17 0.53

M&P

1 43 2.57 0.33
4 260 7.73 0.31

Odar

9 11.5 0.911 1.16
18 30 0.911 2.13
29 6.5 1.77 1.85
38 17 1.77 2.80
50 20 0.589 1.03
56 36 0.589 1.59
65 30 0.442 1.04
68 39 0.442 1.27

(a) The Moorman (1955) experiments, (b) the Mordant and Pinton (2000) experiments, and (c) the Odar (1962) experiments.
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Kwindowðt � sÞ ¼
KBasset;

0
for

t � twindow < s < t;

s < t � twindow:
ð6Þ
If such a window can be specified, only the particle history for a time length of twindow would need to be stored
and integrated for each particle.

The primary assumption for the window model is that the particle acceleration is constant (or nearly so)
over the recent relevant time, i.e. the window duration. In this case, the history force can be correctly retained
by equating the integral of the window kernel to that obtained for finite Reynolds number, i.e.
Z t

t�twindow

Kwindowððt � sÞ; sÞds ¼
Z t

�1
Kððt � sÞ; sÞds ð7Þ
The left integral can be evaluated analytically for long times since Kwindow is either zero or equal to KBasset.
Performing this integration leads to a dimensionless window function (b) given by
b ¼ twindow

sd
¼ p

Z t

�1
K ds

� �2

ð8Þ
Another option would have been to normalize the window time by the convective time-scale ðsc ¼ d=V relÞ
which is more important at high Rep (whereas sd is more important at low Rep). However, both time-scales
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will be incorporated since we will take b ¼ f ðKðRepÞÞ and since Rep ¼ sd=sc. For short-times (where t < bsdÞ,
the lower limit of integration reverts to the creeping flow limit (t = 0) after which it is given by Eq. (8), i.e.
t � twindow � maxð0; t � bsdÞ ð9Þ
Therefore, the total integration time will initially grow but eventually reaches a point where only a portion of
the particle history will be considered.

The function b can be obtained by integrating the kernel of Eq. (5) for a given Rep and choice of c1 and c2.
As shown in Fig. 2, the integrations of the Mei & Adrian, Kim et al., and present history force kernels (shown
as symbols) can be accurately represented by the following three curve fits (shown as lines):
bM&A ¼
0:632

Rep
þ 0:087

� �2

ð10aÞ

bKim ¼
0:502

Rep
þ 0:074

� �2

ð10bÞ

bpresent ¼
0:502

Rep
þ 0:123

� �2

ð10cÞ
Note that the present dimensionless window function is more similar to the Kim et al. model at low Rep but is
closer to (yet greater than) the Mei & Adrian model at large Reynolds numbers.

As previously mentioned, the window model is only valid if the changes in acceleration over twindow are suf-
ficiently small once the long-time behavior is realized. (Note that for short-times, changes in acceleration are
modeled appropriately as the window model reverts to the Basset kernel for the case of twindow > t, Eq. (9).) As
such, we define e to be the ratio of the change in acceleration over the window to the change in acceleration
over the particle’s trajectory, i.e.
e ¼ J windowtwindow

J trajstraj
ð11Þ
where J is the derivative of acceleration (i.e. the ‘‘jerk’’) and straj is a time-scale relevant to the changes in rel-
ative velocity the particle will experience. For negligible changes in acceleration over the window period we
require e� 1. If we assume that the ratio of the two jerks is of order unity (which was verified for most of
the particle falling cases) we can write
e � twindow

straj
ð12Þ
Fig. 2. The window model parameter for three history force kernels.



Fig. 3. Normalized CPU-time per time-step for the various history force expressions applied to Moorman Run 27.
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For falling particle we will choose straj ¼ sp=f and for oscillating particles we will choose straj ¼ sf /2, where sf

is the period of the particle oscillation (for the relative velocity). In these cases, e can be roughly approximated
as
e � 18b
wþ CM

f falling particle ð13aÞ

e � 4bRep;rmsS oscillating particle ð13bÞ
For the falling particle case, the Rep used for b and f is based on terminal conditions for simplicity. For the
oscillating particle case, Rep,rms is based on Vrel,rms while S is the Strouhal number defined as
S ¼ dp

2sf V 0rel;rms

ð14Þ
where V 0rel;rms is the root-mean-square (rms) of the relative velocity fluctuations about the mean. In the results
section we will show that the above rough approximations to e are a good indicator for the window model
limits of applicability.

2.3. Computational expense

The key advantage of the window model compared to conventional history force expressions is its relatively
small storage and its comparatively few number of required integration points; both of which result from a
finite lower limit of integration. A quantitative comparison of the computational cost per time-step was per-
formed for a falling particle simulation and the results are presented in Fig. 3. For this particular case, a sav-
ings of nearly two orders of magnitude is seen for integration times nearing one sd compared to the Basset and
Mei & Adrian expressions. Thus, in cases where the window model formulation remains valid (i.e. sufficiently
small e) the savings in CPU-time for a many particle simulation is quite substantial. A minor but interesting
point is that the Kim et al. and present kernels take approximately twice the CPU-time as compared to the
Mei & Adrian kernel. This is due to the value of c1 for these kernels (in both cases c1 ¼ 2:5) which leads to
floating point exponentiation which much be done in software routines. This is in contrast to the Mei &
Adrian kernel whose square operation involves only integer exponentiation (i.e. multiplication) and a
square-root, both of which can be done at the hardware level at much greater speed.

3. Results

In this section we compare the predictions of the present kernel and the window model (using Eq. (10c))
with example experimental data. To assess the robustness and accuracy of the window model for the falling
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particle data set of Moorman (1955), we first consider variation of particle Reynolds number (for a fixed den-
sity ratio) and secondly a variation of particle density ratio (for a fixed Reynolds number). The falling particle
section is concluded by comparing both the window model and present kernel to data from Mordant and Pin-
ton (2000). Similar comparisons will be made in the following sections for some cases of the oscillating particle
data of Odar (1962). Table 1 summarizes the conditions for these cases and for the cases in Appendices A and
B, which include all the other experimental cases for which sufficient quantitative data was available (some
cases had too few data points or uncertainties in the initial conditions and so were not included). The
predictions in Appendices support all the general statements made for the example cases discussed in the
Fig. 4. Comparison of the window model with falling particle experiments of constant density ratio and various terminal Reynolds
numbers.
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results and are shown in order of increasing e to illustrate deterioration of the model as that parameter
increases.

The ability of the window model was first assessed by predicting the velocity of a particle with density ratio
3.69 and three different terminal Reynolds numbers (varying from 166 to 28.2). This is shown in Fig. 4 where
the present model is compared to experimental data given by Moorman (1955), as well as predictions made
using the Basset kernel and predictions without the history force. The model gives good agreement with
Fig. 5. Comparison of the window model with falling particle experiments with approximately constant terminal Reynolds number and
varying density ratios.



Fig. 6. The present model compared with experiments from Mordant and Pinton (2000).
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the data and with the kernel predictions given in Fig. 1. Next, a variation in density ratio in the Moorman
(1955) data is similarly compared in Fig. 5. The importance of the history force is seen to increase as density
ratio decreases as the window model again performs well compared to the experimental data.

Two selected cases of the falling particle experiments of Mordant and Pinton (2000) are shown in Fig. 6.
Both the window model and present kernel perform reasonably well for the case of Rep,term values of 43
and 260 given there is some experimental uncertainty (ca. 1–2%) in the velocity measurements. Notably,
the window model gives the same result as the present kernel and both provide better predictions of the exper-
imental data than that based on the Basset history force or no history force at all.

The oscillating particle experiments of Odar (1962) are considered to illustrate performance on a second
flowfield. Odar forced a particle to oscillate in a vat of fluid and recorded the total hydrodynamic force
observed during steady-state oscillation. Note that this experimental setup causes the particle to ingest is
own wake as it reaches the end points of the oscillation. In Fig. 7, Odar’s measured hydrodynamic surface
force, Fhydro, (normalized by the quasi-steady drag based on the rms relative velocity) is compared with
numerical predictions as a function of dimensionless time. Note that Fig. 7a and b have different Reynolds
numbers but the same Strouhal number, while Fig. 7b and c have the different Strouhal numbers but the same
Reynolds number. Finally, Fig. 7d is for the highest Strouhal number (1.77) considered by Odar. As discussed
in Section 1.2, the long-time decay rate (t�2) assumed by the kernel of the form given in Eq. (5) may not be
appropriate, regardless of the values of c1 and c2. This is because the particle stops and reverses direction lead-
ing to wake ingesting which can alter the long-time decay rate to exponential or even t�1 if these events occur
abruptly. However, the predictions made by the Mei & Adrian and present kernels are reasonable indicating
this effect is generally not large for the present conditions (S or order unity or less), especially considering that
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the unsteady drag shown here may be a small portion of the total drag. It is likely that the errant decay rate
would become more evident for the higher Strouhal number cases (S � 1) where the reversal of relative veloc-
ity is more violent.

Fig. 7 also shows predictions made using the window model version of the present kernel. Here we note that
the predictions are substantially different than those made by the present kernel and can even be worse than
predictions made using the Basset kernel. Additionally, a non-physical change in slope is seen around the
upper and lower peaks where the slope changes too quickly compared to the data. These problems are gen-
erally related to the range of applicability of the window model as discussed below.

The data shown in Figs. 4–6 and the cases in Appendices A and B indicate good agreement between the
window model and experimental data until e becomes somewhat greater than unity. This is qualitatively con-
sistent with our expectations and illustrates the model’s limitations. However, the simple definitions of e
employed herein involve quantities that are generally known a priori such that the applicability of the window
model may be assessed prior to simulating a particle’s trajectory. In the presence of turbulence this is less obvi-
ous but Dorgan and Loth (2004) give a model for estimating V 0rel;rms and Rep,rms so that Eqs. (13b) and (14) can
be estimated. However, turbulence introduces several other issues (e.g. non-rectilinear motion, spatial gradi-
ents of the flow, wide ranges of frequencies, etc.) that require further study.
4. Summary

The two coefficients of the history force kernel given by Mei and Adrian (1992) were optimized based on
quantitative comparison with experimental data given by Moorman (1955). This included particle terminal
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Reynolds numbers ranging from 9 to 853 and density ratios ranging from 1.17 to 9.32. Good agreement with
the falling particle data of Mordant and Pinton (2000) was also obtained using these new coefficients.

A new and efficient method, the window model, was developed for computing the history force integral for
finite Reynolds number particles and was based on the assumption of weak changes in acceleration within the
window. The window model can be applied to any generic history force kernel and can result in orders of
magnitude reduction in CPU-time compared to conventional history force calculations. The model was shown
to perform well when predicting the behavior of falling particles provided e was sufficiently small (e.g. less than
unity).

For the oscillating particle experiments of Odar (1962), the history force kernels were not as accurate
(though still reasonable) in cases where rapid wake ingestion occurred, i.e. S > 1: This is attributed to assump-
tion of a t�2 long-time dependence which is invalid during rapid deceleration (when it can become exponential
or t�1 behavior). More substantial errors were introduced when applying the window model to these condi-
tions, since they were often associated with high changes in acceleration over the window period with e greater
than unity.
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